MAP Inference on Million Node Graphical Models: KL-divergence based Alternating Directions Method
نویسندگان
چکیده
Motivated by a problem in large scale climate data analysis, we consider the problem of maximum a posteriori (MAP) inference in graphical models with millions of nodes. While progress has been made in recent years, existing MAP inference algorithms are inherently sequential and hence do not scale well. In this paper, we present a parallel MAP inference algorithm called KL-ADM based on two ideas: tree-decomposition of a graph, and the alternating directions method (ADM). However, unlike standard ADM, we use an inexact ADM augmented with a Kullback-Leibler (KL) divergence based regularization. The unusual modification leads to an efficient iterative algorithm while avoiding double-loops. We rigorously prove global convergence of KL-ADM. We illustrate the effectiveness of KL-ADM through extensive experiments on large synthetic and real datasets. The application on real world precipitation data finds all major droughts in the last century.
منابع مشابه
Bethe-ADMM for Tree Decomposition based Parallel MAP Inference
We consider the problem of maximum a posteriori (MAP) inference in discrete graphical models. We present a parallel MAP inference algorithm called Bethe-ADMM based on two ideas: tree-decomposition of the graph and the alternating direction method of multipliers (ADMM). However, unlike the standard ADMM, we use an inexact ADMM augmented with a Bethe-divergence based proximal function, which make...
متن کاملAlternating Directions Dual Decomposition for MAP Inference in Graphical Models ∗
We present AD, a new algorithm for approximate maximum a posteriori (MAP) inference on factor graphs, based on the alternating directions method of multipliers. Like other dual decomposition algorithms, AD has a modular architecture, where local subproblems are solved independently, and their solutions are gathered to compute a global update. The key characteristic of AD is that each local subp...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملAD3: alternating directions dual decomposition for MAP inference in graphical models
We present AD, a new algorithm for approximate maximum a posteriori (MAP) inference on factor graphs, based on the alternating directions method of multipliers. Like other dual decomposition algorithms, AD has a modular architecture, where local subproblems are solved independently, and their solutions are gathered to compute a global update. The key characteristic of AD is that each local subp...
متن کاملLinear Approximation to ADMM for MAP inference
Maximum a posteriori (MAP) inference is one of the fundamental inference tasks in graphical models. MAP inference is in general NP-hard, making approximate methods of interest for many problems. One successful class of approximate inference algorithms is based on linear programming (LP) relaxations. The augmented Lagrangian method can be used to overcome a lack of strict convexity in LP relaxat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012